

Actl6a Antibody (C-term)
Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AW5364

Specification

Actl6a Antibody (C-term) - Product Information

Application	WB, IHC-P, IF,E
Primary Accession	O96019
Other Accession	Q9Z2N8
Reactivity	Human, Mouse
Predicted	Monkey
Host	Rabbit
Clonality	Polyclonal
Calculated MW	M=47;H=47,43 KDa
Isotype	Rabbit IgG
Antigen Source	HUMAN

Actl6a Antibody (C-term) - Additional Information

Gene ID 86

Antigen Region

295-320

Other Names

Actin-like protein 6A, 53 kDa BRG1-associated factor A, Actin-related protein Baf53a, BRG1-associated factor 53A, BAF53A, Actl6a, Actl6, Baf53a

Dilution

WB~~1:1000
IHC-P~~1:25
IF~~1:25

Target/Specificity

This Actl6a antibody is generated from a rabbit immunized with a KLH conjugated synthetic peptide between 295-320 amino acids from the C-terminal region of mouse Actl6a.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Actl6a Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

Actl6a Antibody (C-term) - Protein Information

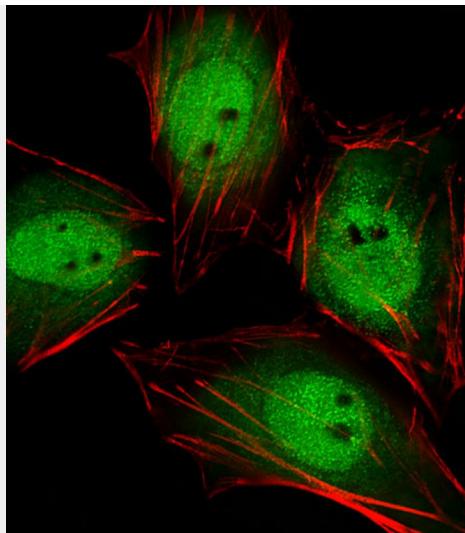
Name ACTL6A

Synonyms BAF53, BAF53A, INO80K

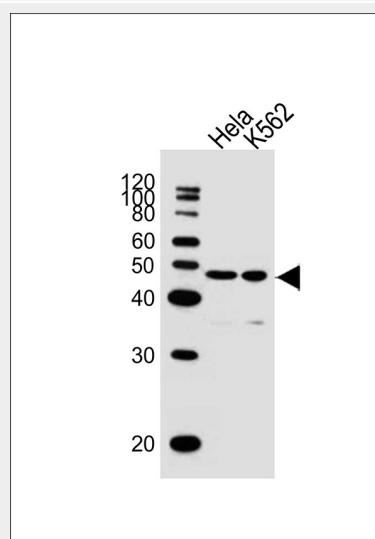
Function

Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Required for maximal ATPase activity of SMARCA4/BRG1/BAF190A and for association of the SMARCA4/BRG1/BAF190A containing remodeling complex BAF with chromatin/nuclear matrix. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Putative core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair.

Cellular Location


Nucleus.

Actl6a Antibody (C-term) - Protocols


Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

Actl6a Antibody (C-term) - Images

Fluorescent image of HeLa cells stained with Actl6a Antibody (C-term) (Cat#AW5364). AW5364 was diluted at 1:25 dilution. An Alexa Fluor 488-conjugated goat anti-rabbit IgG at 1:400 dilution was used as the secondary antibody (green). Cytoplasmic actin was counterstained with Alexa Fluor® 555 conjugated with Phalloidin (red).

All lanes : Anti-Actl6a Antibody (C-term)(AW5364) at 1/1000 dilution Lane 1: HeLa whole cell lysates Lane 2: K562 whole cell lysates Lysates/proteins at 20 μ g per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution Predicted band size : 47 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

Immunohistochemical analysis of paraffin-embedded mouse brain section using Actl6a Antibody (C-term)(Cat#AW5364). AW5364 was diluted at 1:25 dilution. A undiluted biotinylated goat polyvalent antibody was used as the secondary, followed by DAB staining.

Actl6a Antibody (C-term) - Background

Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for maximal ATPase activity of SMARCA4/BRG1/BAF190A and for association of the SMARCA4/BRG1/BAF190A containing remodeling complex BAF with chromatin/nuclear matrix. Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Also involved in vitamin D-coupled transcription regulation via its association with the WINAC complex, a chromatin-remodeling complex recruited by vitamin D receptor (VDR), which is required for the ligand- bound VDR-mediated transrepression of the CYP27B1 gene (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron- specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair (By similarity).

Actl6a Antibody (C-term) - References

Zhao K.,et al.Cell 95:625-636(1998).
Carninci P.,et al.Science 309:1559-1563(2005).
Lessard J.,et al.Neuron 55:201-215(2007).